Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Appl Environ Microbiol ; 88(7): e0246021, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35319232

RESUMO

Cellulose is the most abundant biopolymer on earth and offers versatile applicability in biotechnology. Bacterial cellulose, especially, is an attractive material because it represents pure microcrystalline cellulose. The cellulose synthase complex of acetic acid bacteria serves as a model for general studies on (bacterial) cellulose synthesis. The genome of Komagataeibacter hansenii ATCC 23769 encodes three cellulose synthase (CS) operons of different sizes and gene compositions. This implies the question of which role each of the three CS-encoding operons, bcsAB1, bcsAB2, and bcsAB3, plays in overall cellulose synthesis. Therefore, we constructed markerless deletions in K. hansenii ATCC 23769, yielding mutant strains that expressed only one of the three CSs. Apparently, BcsAB1 is the only CS that produces fibers of crystalline cellulose. The markerless deletion of bcsAB1 resulted in a nonfiber phenotype in scanning electron microscopy analysis. Expression of the other CSs resulted in a different, nonfibrous extracellular polymeric substance (nfEPS) structure wrapping the cells, which is proposed to contain acetylated cellulose. Transcription analysis revealed that all CSs were expressed continuously and that bcsAB2 showed a higher transcription level than bcsAB1. Moreover, we were able to link the expression of diguanylate cyclase B (dgcB) to cellulose production. IMPORTANCE Acetic acid bacteria form a massive biofilm called "mother of vinegar," which is built of cellulose fibers. Bacterial cellulose is an appealing biomaterial with manifold applications in biomedicine and biotechnology. Because most cellulose-producing acetic acid bacteria express several cellulose synthase operons, a deeper understanding of their contribution to the synthesis of modified forms of cellulose fibers within a natural biofilm is of special interest. For the first time, we were able to identify the contribution of each of the three cellulose synthases to cellulose formation in Komagataeibacter hansenii ATCC 23769 after a chromosomal clean deletion. Moreover, we were able to depict their roles in spatial composition of the biofilm. These findings might be applicable in the future for naturally modified biomaterials with novel properties.


Assuntos
Celulose , Matriz Extracelular de Substâncias Poliméricas , Acetatos , Acetobacteraceae , Celulose/química , Óperon
2.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036728

RESUMO

We characterized an operon in Mycobacterium tuberculosis, Rv3679-Rv3680, in which each open reading frame is annotated to encode "anion transporter ATPase" homologues. Using structure prediction modeling, we found that Rv3679 and Rv3680 more closely resemble the guided entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of the nucleotide-bound Rv3679-Rv3680 complex at 2.5 to 3.2 Å and show that while it has some similarities to Get3 and ArsA, there are notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous growth defects in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined.IMPORTANCE Numerous bacterial species encode proteins predicted to have similarity with Get3- and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests that BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte de Ânions/genética , Feminino , Genoma Bacteriano , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Óperon , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
Bioprocess Biosyst Eng ; 41(2): 265-279, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29177720

RESUMO

Bacterial cellulose (BC) exhibits unique properties such as high purity compared to plant-based cellulose; however, commercial production of BC has remained a challenge, primarily due to the strain properties of cellulose-producing bacteria. Herein, we developed a functional and stable BC production system in genetically modified (GM) Escherichia coli by recombinant expression of both the BC synthase operon (bcsABCD) and the upstream operon (cmcax, ccp Ax). BC production was achieved in GM HMS174 (DE3) and in GM C41 (DE3) by optimization of the culture temperature (22 °C, 30 °C, and 37 °C) and IPTG concentration. BC biosynthesis was detected much earlier in GM C41 (DE3) cultures (3 h after IPTG induction) than those of Gluconacetobacter hansenii. GM HMS174 (DE3) produced dense fibres having a length of approximately 1000-3000 µm and a diameter of 10-20 µm, which were remarkably larger than the fibres of BC typically produced by G. hansenii.


Assuntos
Celulose/biossíntese , Escherichia coli , Gluconacetobacter/genética , Microrganismos Geneticamente Modificados , Óperon , Celulose/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconacetobacter/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo
4.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159794

RESUMO

Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.


Assuntos
Actinomycetales/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Rifamicinas/biossíntese , Transativadores/genética , Transativadores/metabolismo , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Recombinação Homóloga , Família Multigênica , Mutação , Fases de Leitura Aberta , Óperon , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
5.
J Bacteriol ; 195(22): 5072-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24013627

RESUMO

The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel(-)) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript "Ax" indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel(-) mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel(-) mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding ß-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis.


Assuntos
Celulose/metabolismo , Elementos de DNA Transponíveis , Gluconacetobacter/genética , Gluconacetobacter/metabolismo , Mutagênese Insercional/métodos , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Immunoblotting , Óperon , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real
6.
Infect Immun ; 81(11): 4160-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980107

RESUMO

Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402-3411, 2009). In the present study, we show that this secretion system is also regulated by the small nucleoid-associated protein Fis. Inactivation of the H. ducreyi fis gene resulted in a reduction in expression of both the H. ducreyi LspB and LspA2 proteins. DNA microarray experiments showed that a H. ducreyi fis deletion mutant exhibited altered expression levels of genes encoding other important H. ducreyi virulence factors, including DsrA and Flp1, suggesting a possible global role for Fis in the control of virulence in this obligate human pathogen. While the H. ducreyi Fis protein has a high degree of sequence and structural similarity to the Fis proteins of other bacteria, its temporal pattern of expression was very different from that of enterobacterial Fis proteins. The use of a lacZ-based transcriptional reporter provided evidence which indicated that the H. ducreyi Fis homolog is a positive regulator of gyrB, a gene that is negatively regulated by Fis in enteric bacteria. Taken together, the Fis protein expression data and the observed regulatory effects of Fis in H. ducreyi suggest that this small DNA binding protein has a regulatory role in H. ducreyi which may differ in substantial ways from that of other Fis proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas de Bactérias/biossíntese , Fator Proteico para Inversão de Estimulação/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus ducreyi/genética , Óperon , Fusão Gênica Artificial , Fator Proteico para Inversão de Estimulação/genética , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reporter , Lectinas/biossíntese , Análise em Microsséries , Transcrição Gênica , Regulação para Cima , Fatores de Virulência/metabolismo , beta-Galactosidase/análise , beta-Galactosidase/genética
7.
J Bacteriol ; 195(7): 1610-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292779

RESUMO

In Mycobacterium, multidrug efflux pumps can be associated with intrinsic drug resistance. Comparison of putative mycobacterial transport genes revealed a single annotated open reading frame (ORF) for a multidrug and toxic compound extrusion (MATE) family efflux pump in all sequenced mycobacteria except Mycobacterium leprae. Since MATE efflux pumps function as multidrug efflux pumps by conferring resistance to structurally diverse antibiotics and DNA-damaging chemicals, we studied this gene (MSMEG_2631) in M. smegmatis mc(2)155 and determined that it encodes a MATE efflux system that contributes to intrinsic resistance of Mycobacterium. We propose that the MSMEG_2631 gene be named mmp, for mycobacterial MATE protein. Biolog Phenotype MicroArray data indicated that mmp deletion increased susceptibility for phleomycin, bleomycin, capreomycin, amikacin, kanamycin, cetylpyridinium chloride, and several sulfa drugs. MSMEG_2619 (efpA) and MSMEG_3563 mask the effect of mmp deletion due to overlapping efflux capabilities. We present evidence that mmp is a part of an MSMEG_2626-2628-2629-2630-2631 operon regulated by a strong constitutive promoter, initiated from a single transcription start site. All together, our results show that M. smegmatis constitutively encodes an Na(+)-dependent MATE multidrug efflux pump from mmp in an operon with putative genes encoding proteins for apparently unrelated functions.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium smegmatis/metabolismo , Técnicas de Tipagem Bacteriana , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Análise em Microsséries , Mycobacterium smegmatis/genética , Óperon , Fenótipo , Regiões Promotoras Genéticas , Especificidade por Substrato , Sítio de Iniciação de Transcrição
8.
Nucleic Acids Res ; 39(5): 1732-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21051341

RESUMO

Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae's genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae's pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3' (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10(-7)). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5' (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts.


Assuntos
Mycobacterium leprae/genética , Óperon , Pseudogenes , Ordem dos Genes , Genes Bacterianos , Genômica
9.
Proc Natl Acad Sci U S A ; 107(2): 878-81, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080769

RESUMO

The genus Mycobacterium, which is a member of the high G+C group of Gram-positive bacteria, includes important pathogens, such as M. tuberculosis and M. leprae. A recent publication in PNAS reported that M. marinum and M. bovis bacillus Calmette-Guérin produce a type of spore known as an endospore, which had been observed only in the low G+C group of Gram-positive bacteria. Evidence was presented that the spores were similar to endospores in ultrastructure, in heat resistance and in the presence of dipicolinic acid. Here, we report that the genomes of Mycobacterium species and those of other high G+C Gram-positive bacteria lack orthologs of many, if not all, highly conserved genes diagnostic of endospore formation in the genomes of low G+C Gram-positive bacteria. We also failed to detect the presence of endospores by light microscopy or by testing for heat-resistant colony-forming units in aged cultures of M. marinum. Finally, we failed to recover heat-resistant colony-forming units from frogs chronically infected with M. marinum. We conclude that it is unlikely that Mycobacterium is capable of endospore formation.


Assuntos
Mycobacterium tuberculosis/fisiologia , Mycobacterium/fisiologia , Esporos Bacterianos/fisiologia , Bacillus subtilis/genética , Sequência de Bases , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Genoma Bacteriano , Humanos , Mycobacterium/genética , Mycobacterium marinum/genética , Mycobacterium marinum/fisiologia , Mycobacterium tuberculosis/genética , Óperon , Streptomyces/genética , Tuberculose/genética , Tuberculose/imunologia
10.
FEBS Lett ; 584(4): 669-74, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20085764

RESUMO

In prokaryotes, operon encoded proteins often form protein-protein complexes. Here, we show that the native structure of operons can be used to efficiently overexpress protein complexes. This study focuses on operons from mycobacteria and the use of Mycobacterium smegmatis as an expression host. We demonstrate robust and correct stoichiometric expression of dimers to higher oligomers. The expression efficacy was found to be largely independent of the intergenic distances. The strategy was successfully extended to express mycobacterial protein complexes in Escherichia coli, showing that the operon structure of gram-positive bacteria is also functional in gram-negative bacteria. The presented strategy could become a general tool for the expression of large quantities of pure prokaryotic protein complexes for biochemical and structural studies.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Mycobacterium/genética , Óperon/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mycobacterium/metabolismo , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Multimerização Proteica
11.
J Mol Microbiol Biotechnol ; 12(1-2): 75-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17183214

RESUMO

Carbon metabolism and regulation is poorly understood in mycobacteria, a genus that includes some major pathogenic species like Mycobacterium tuberculosis and Mycobacterium leprae. Here, we report the identification of a glucose kinase from Mycobacterium smegmatis. This enzyme serves in glucose metabolism and global carbon catabolite repression in the related actinomycete Streptomyces coelicolor. The gene, msmeg1356 (glkA), was found by means of in silico screening. It was shown that it occurs in the same genetic context in all so far sequenced mycobacterial species, where it is located in a putative tricistronic operon together with a glycosyl hydrolase and a putative malonyl-CoA transacylase. Heterologous expression of glkA in an Escherichia coli glucose kinase mutant led to the restoration of glucose growth, which provided in vivo evidence for glucose kinase function. GlkA(Msm) was subsequently overproduced in order to study its enzymatic features. We found that it can form a dimer and that it efficiently phosphorylates glucose at the expense of ATP. The affinity constant for glucose was with 9 mM about eight times higher and the velocity was about tenfold slower when compared to the parallel measured glucose kinase of S. coelicolor. Both enzymes showed similar substrate specificity, which consists in an ATP-dependent phosphorylation of glucose and no, or very inefficient, phosphorylation of the glucose analogues 2-deoxyglucose and methyl alpha-glucoside. Hence, our data provide a basis for studying the role of mycobacterial glucose kinase in vivo to unravel possible catalytic and regulatory functions.


Assuntos
Proteínas de Bactérias/metabolismo , Genes Bacterianos , Glucoquinase/metabolismo , Glucose/metabolismo , Mycobacterium smegmatis/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Glucoquinase/genética , Dados de Sequência Molecular , Mutação , Mycobacterium smegmatis/genética , Óperon , Fosforilação , Filogenia , Especificidade por Substrato
12.
BMC Microbiol ; 5: 54, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-16202131

RESUMO

BACKGROUND: Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. RESULTS: Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element) was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. CONCLUSION: The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns allowed for identification of ML1624 of M. leprae and its orthologs as the candidate regulatory proteins that may bind to the LEU element. T-boxes upstream of the ileS genes are unusual, as their regulatory mechanism seems to be inhibition of translation initiation via a hairpin sequestering the Shine-Dalgarno box.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Aminoácidos/metabolismo , RNA Bacteriano/genética , Regiões 5' não Traduzidas , Regulação Bacteriana da Expressão Gênica , Leucina/metabolismo , Óperon , RNA Mensageiro/genética
13.
FEMS Immunol Med Microbiol ; 45(2): 291-302, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15949925

RESUMO

Plasmid pSET152 is a broad host range mobilizable vector which integrates into streptomyces chromosome utilizing att site and int function of slashed circleC31. Transformation of this plasmid into Mycobacterium smegmatis mc2 155 SMR5 gave stable transformants carrying the pSET152 as an integrated copy. Integration occurred at the cross over sequence 5'TTG disrupting the gatA gene (Glu-tRNA(Gln) amidotransferase subunitA), which is non-essential under conditions used. Recombinant pSET152 plasmids carrying mce1 locus of Mycobacterium leprae were used to construct M. smegmatis transformants carrying the mce1 locus in their chromosome. RT-PCR analysis revealed specific transcripts of M. leprae mce in M. smegmatis. The transcribed mRNA carried intergenic regions between genes of mce1 locus indicating that mce1 locus is an operon. Examination of M. leprae specific mRNA from lepromatous leprosy patient's biopsy showed that mce locus is transcribed as an operon in the pathogen also.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Mycobacterium leprae/genética , Mycobacterium smegmatis/genética , Sítios de Ligação Microbiológicos/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Expressão Gênica , Vetores Genéticos , Humanos , Hanseníase Virchowiana/microbiologia , Dados de Sequência Molecular , Mycobacterium leprae/patogenicidade , Óperon , Plasmídeos/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Transformação Genética
14.
Microbios ; 102(401): 7-15, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10817516

RESUMO

A Mycobacterium bovis gene coding for a putative MalE maltose binding protein was cloned and its full-length sequence determined. Database searches revealed 99.9% identity with IpqY, encoding a putative sugar uptake protein from Mycobacterium tuberculosis strain H37Rv. The deduced protein product showed high sequence similarity to MalE-like proteins from a variety of bacterial species, including Mycobacterium leprae. Analysis of flanking database sequences from M. tuberculosis and M. leprae revealed the presence of malF-, malG- and malK-like genes. Comparison of these mycobacterial sequences with other maltose operons has allowed us to deduce a unique genomic arrangement of the genes involved in the uptake of maltose in members of the Mycobacterium tuberculosis complex and M. leprae.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Transporte/genética , Proteínas de Escherichia coli , Genes Bacterianos , Proteínas de Transporte de Monossacarídeos , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Proteínas Periplásmicas de Ligação , Proteínas de Bactérias/genética , Sequência de Bases , Transporte Biológico/genética , Escherichia coli/genética , Maltose/metabolismo , Proteínas Ligantes de Maltose , Dados de Sequência Molecular , Mycobacterium bovis/genética , Óperon , Homologia de Sequência do Ácido Nucleico , Transformação Bacteriana
15.
Microb Pathog ; 27(3): 173-7, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10455007

RESUMO

The genome project on Mycobacterium tuberculosis H37Rv has revealed four mammalian cell entry (MTmce1-4) operons putatively involved with entry and survival of mycobacteria in host cells. A homologous operon to the MTmce1 operon was identified in cosmid B983 of Mycobacterium leprae. By comparison with M. tuberculosis, several mutations, or sequencing errors, were predicted at specific sites causing frame shifts in the MLyrbE1A, MLyrbE1B and MLmce1D genes. Using targeted sequencing, sequence errors were identified. The corrected MLmce1 operon sequence appears to be highly homologous to the MTmce1 operon, and similarly encodes eight potential genes. Thus, both M. tuberculosis and M. leprae mce1 operons may be functional and involved in host cell targeting.


Assuntos
Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Óperon/genética , Sequência de Bases , Cosmídeos/genética , Genes Bacterianos/genética , Dados de Sequência Molecular , Alinhamento de Sequência
16.
Indian J Lepr ; 71(1): 19-35, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10439323

RESUMO

In mycobacteria secreted proteins represent a distinct group, probably of particular importance for development of immune responses following infection. Quantification of individual proteins in Mycobacterium tuberculosis culture fluid and corresponding disrupted bacilli permits determination of a localization index for identification of secreted proteins. This procedure cannot be applied for Mycobacterium leprae since secreted proteins are lost during isolation of bacilli from tissues. The DNA sequences of secreted proteins of M. tuberculosis were compared with sequences of M. leprae. Genes for homologues of the 85a, 85b, 85c, mpt32 (apa), mpt51, erp, mtc28, mtb12, Rv3354 and Rv0526 genes were identified. All of these and six genes of the mcel operon contain signal sequences for secretion in M. leprae as well. In several instances the local distance between marker genes and occurrence on the same or the complementary DNA strand was similar in these two species. The genomic organization of genes for secreted proteins is thus very similar in M. leprae and M. tuberculosis, the homology being higher for the mature polypeptide chains than for the corresponding signal peptides.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Mycobacterium leprae/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Lipoproteínas/genética , Mycobacterium tuberculosis/genética , Óperon , Sinais Direcionadores de Proteínas , Solubilidade
17.
J Bacteriol ; 180(1): 65-72, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9422594

RESUMO

We have isolated a UV-induced temperature-sensitive mutant of Mycobacterium smegmatis that fails to grow at 42 degrees C and exhibits a filamentous phenotype following incubation at the nonpermissive temperature, reminiscent of a defect in cell division. Complementation of this mutant with an M. smegmatis genomic library and subsequent subcloning reveal that the defect lies within the M. smegmatis dnaG gene encoding DNA primase. Sequence analysis of the mutant dnaG allele reveals a substitution of proline for alanine at position 496. Thus, dnaG is an essential gene in M. smegmatis, and DNA replication and cell division are coupled processes in this species. Characterization of the sequences flanking the M. smegmatis dnaG gene shows that it is not part of the highly conserved macromolecular synthesis operon present in other eubacterial species but is part of an operon with a dgt gene encoding dGTPase. The organization of this operon is conserved in Mycobacterium tuberculosis and Mycobacterium leprae, suggesting that regulation of DNA replication, transcription, and translation may be coordinated differently in the mycobacteria than in other bacteria.


Assuntos
DNA Primase/genética , Replicação do DNA/genética , Genes Bacterianos/genética , Mycobacterium/genética , Alelos , Sequência de Aminoácidos , Divisão Celular/genética , Análise Mutacional de DNA , Teste de Complementação Genética , Ligação Genética , Dados de Sequência Molecular , Mutação , Mycobacterium/citologia , Fases de Leitura Aberta/genética , Óperon/genética , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Temperatura
18.
Antimicrob Agents Chemother ; 41(10): 2270-3, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9333060

RESUMO

The mycobacterial embCAB operon encodes arabinosyl transferases, putative targets of the antimycobacterial agent ethambutol (EMB). Mutations in embB lead to resistance to EMB in Mycobacterium tuberculosis. The basis for natural, intrinsic resistance to EMB in nontuberculous mycobacteria (NTM) is not known; neither is the practical implication of resistance to EMB in the absence of embB mutations in M. tuberculosis well understood. The conserved embB resistance-determining region (ERDR) of a collection of 13 strains of NTM and 12 EMB-resistant strains of M. tuberculosis was investigated. Genotypes were correlated with drug susceptibility phenotypes. High-level natural resistance to EMB (MIC, . or =64 microg/ml) was associated with a variant amino acid motif in the ERDR of M. abscessus, M. chelonae, and M. leprae. Transfer of the M. abscessus emb allele to M. smegmatis resulted in a 500-fold increase in the MICs. In M. tuberculosis, embB mutations were associated with MICs of > or =20 microg/ml while resistance not associated with an ERDR mutation generally resulted in MICs of < or =10 microg/ml. These data further support the notion that the emb region determines intrinsic and acquired resistance to EMB and might help in the reassessment of the current recommendations for the screening and treatment of infections with EMB-resistant M. tuberculosis and NTM.


Assuntos
Antituberculosos/farmacologia , Etambutol/farmacologia , Genes Bacterianos/fisiologia , Mycobacterium tuberculosis/genética , Resistência Microbiana a Medicamentos/genética , Biblioteca Gênica , Técnicas de Transferência de Genes , Genes Bacterianos/genética , Genótipo , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Óperon/genética , Reação em Cadeia da Polimerase
19.
Genome Res ; 7(8): 802-19, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9267804

RESUMO

The nucleotide sequence of 1.5 Mb of genomic DNA from Mycobacterium leprae was determined using computer-assisted multiplex sequencing technology. This brings the 2.8-Mb M. leprae genome sequence to approximately 66% completion. The sequences, derived from 43 recombinant cosmids, contain 1046 putative protein-coding genes, 44 repetitive regions, 3 tRNAs, and 15 tRNAs. The gene density of one per 1.4 kb is slightly lower than that of Mycoplasma (1.2 kb). Of the protein coding genes, 44% have significant matches to genes with well-defined functions. Comparison of 1157 M. leprae and 1564 Mycobacterium tuberculosis proteins shows a complex mosaic of homologous genomic blocks with up to 22 adjacent proteins in conserved map order. Matches to known enzymatic, antigenic, membrane, cell wall, cell division, multidrug resistance, and virulence proteins suggest therapeutic and vaccine targets. Unusual features of the M. leprae genome include large polyketide synthase (pks) operons, inteins, and highly fragmented pseudogenes.


Assuntos
DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Mycobacterium leprae/genética , Análise de Sequência de DNA , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Metodologias Computacionais , Cosmídeos/isolamento & purificação , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Mycobacterium tuberculosis/genética , Fases de Leitura Aberta/genética , Óperon/genética , Pseudogenes , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
20.
Mol Microbiol ; 26(5): 991-1003, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9426136

RESUMO

Mycobacterial interspersed repetitive units (MIRUs), a novel class of repeated sequences, were identified within the intercistronic region of an operon coding for a mycobacterial two-component system, named senX3-regX3. Southern blot analysis and homology searches revealed the presence of several homologous sequences in intergenic regions dispersed throughout the genomes of Mycobacterium bovis BCG, Mycobacterium tuberculosis and Mycobacterium leprae. These could be grouped into three major families, containing elements of 77-101 bp, 46-53 bp and 58-101 bp. Based on the available mycobacterial sequences, the total number of MIRUs is estimated to be about 40-50 per genome. Similar to previously identified small repetitive sequences, the MIRUs of the two-component operon are transcribed on a polycistronic mRNA. Unlike previously identified small repetitive sequences, however, MIRUs do not contain dyad symmetries, comprise small open reading frames (ORFs) whose extremities overlap those of the contiguous ORFs and are oriented in the same translational direction as those of the adjacent genes. Analyses of the sequences at the insertion sites suggest that MIRUs disseminate by transposition into DTGA sites involved in translational coupling in polycistronic operons.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Mycobacterium/genética , Óperon , Fosfotransferases , Sequências Repetitivas de Ácido Nucleico , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Bacteriano , Expressão Gênica , Genes , Dados de Sequência Molecular , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA